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ABSTRACT

In this paper the problem of using measured modal
parameters to detect and locate damage in plate-like
structures is investigated. Many methods exist for locating
damage in a structure given the modal properties before and
after damage. Unfortunately, many of these methods
require a correlated finite element model or mass
normalized mode shapes. If the modal properties are
obtained using ambient excitation then the mode shapes will
not be mass normalized. In this paper a method based on
the changes in the strain energy of the structure will be
discussed. This method has been successfully applied to
beam-like structures, that is, structures characterized by
one-dimensional curvature. In this paper the method will be
generalized to plate-like structures that are characterized by
two-dimensional curvature. This method only requires the
mode shapes of the structure before and after damage. To
evaluate the effectiveness of the method it will be applied to
simulated data.

NOMENCLATURE

D =ER/12(1 - v*)= bending stiffness of a plate

El Flexural rigidity

E; Fractional energy associated with sub-region j due
to the i" mode

Fi Fractional g‘nergy associated with sub-region jk
due to the i mode

Ny Number of divisions in beam-like structure

N, Number of divisions in the x-direction of a plate-
like structure

N, Number of divisions in the y-direction of a plate-
like structure

U Strain energy

8 Strain energy associated with the i mode

Uj; Strain energy associated with sub-region j due to

the i™ mode

**  Los Alamos National Laboratory
ESA-EA, MS P946
Los Alamos, NM 87545

Ui Strain energy associated with sub-region jk due to
the i mode

X, Y,z Translational coordinates

u, v, w Displacements in x, y and z directions

B Damage index for sub-region k

Bix Damage index for sub-region jk

Z, Normalized damage index for sub-region k

By, 0  mean and standard deviation of By

Wi i mode shape

(> Indicates a quantity calculated using the damaged

mode shapes, v;
INTRODUCTION

Significant work has been done in the area of detecting
damage in structures using changes in the dynamic response
of the structure. Since the natural frequencies and mode
shapes of a structure are dependent on the mass and
stiffness distributions any subsequent changes in them
should, theoretically, be reflected in changes in the
frequency and mode shapes of the structure. The problem
of using measured frequencies and mode shapes and their
sensitivity to damage is a question not to be addressed in
this paper. An extensive literature review [1] of the state of
the art of damage detection and health monitoring from
vibration characteristics has recently been published. From
this review it is clear that there are a large number of
proposed methods of detecting damage from vibration
characteristics but, unfortunately, many of these methods
require a correlated finite element model and/or mass
normalized mode shapes. [If the modal properties are
obtained using ambient excitation, as would most likely be
the case for a remote, automated health monitoring system,
then the mode shapes will not be mass normalized. The
method proposed in this paper avoids both of these
problems.

In this paper an extension of a method proposed by Stubbs
and Kim [2] will be presented. This method requires that
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the mode shapes before and after damage be known, but the
modes do not need to be mass normalized and only a few
modes are required. The original formulation by Stubbs
and Kim was primarily for beam-like structures that are
characterized by one-dimensional curvature. In this paper
the method will be generalized to plate-like structures that
are characterized by two-dimensional curvature. To
examine limitations of the method it will be applied to
several sets of simulated data and comparisons will be made
between applying the original formulation to a series of
slices of the structure verses the true two-dimensional
formulation.

THEORY

For completeness the derivation of the damage indicator
will be shown for both beam-like and plate-like structures.

eam-li ture
The strain energy of a Bernoulli-Euler beam is given by

U-*jEI(Zi )dx ¢y

For a particular mode shape, y,(x), the energy associated
with that mode shape is
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If the beam is subdivided into N, divisions as shown in
Figure 1, then the energy associated with each sub-region j
due to the i" mode is given by
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Similar quantities can be defined for a damaged structure
and are given by Eq. (6-9)
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By choosing the sub-regions to be relatively small, the
flexural rigidity for the j™ sub-region, El; is roughly
constant and £ becomes

El) T[OZW')

i

If we assume that the damage is primarily located at a single
sub-region then the fractional energy will remain relatively

constant in undamaged sub-regions and F;=F;. For a
single damaged location at sub-region j=k we find
ey aiwA 2 82
0, T[54 o e (54 ]
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If we assume that EI is essentially constant over the length
of the beam for both the undamaged and damaged modes
Eq. (11) can be rearranged to give an indication of the
change in the flexural rigidity of the sub-region as shown in

Eq. (12)
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In order to use all the measured modes, m, in the
calculation, the damage index for sub-region k is defined to
be
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One advantage to the formulation shown in Eqs. 12 and 13
is that the modes do not need be normalized. Assuming that
the collection of the damage indices, §,, represent a sample
population of a normally distributed random variable, a
normalized damage index is obtained using Eq. (14)
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7, = PP (14)
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where ﬁ,[ and o, represent the mean and standard deviation
of the damage indices, respectively. In this paper it will be
assumed that normalized damage indices with values greater
than two are associated with potential damage locations.

Plate-like structures
The strain energy of a plate is given by Eq. 15 [3].
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For a particular mode shape, v,(x,y), the energy associated
with that mode shape is
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If the plate is subdivided into N, subdivisions in the x
direction and N, subdivisions in the y direction as shown in
Fi lgure 2 then the energy associated with sub-region jk for
the i mode is given by

Dy i g 2y, ) 2y, | Py,
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and the fractional energy at location jk is defined to be

- (jl
Fy = .U/;’L 19)
and
Ny Nx
Z > Fy =1 (20)

Similar expressions can be written using the modes of the
damaged structure, y;. Using arguments similar to the ones

used for beam-like structures a ratio of parameters can be
determined that is indicative of the change of stiffness in the
structure as shown in Eq. 21-22.
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and an analogous term f; can be defined using the
damaged mode shapes. In order to account for all measured

modes, the following formulation for the damage index for
sub-region jk is used

> 1
By =L 23)
Z; f!ik

Once again a normalized damage index can be found using
Eq. (14).

RESULTS

Both algorithms discussed in the theory section can be
applied to detect damage in plate-like structures.  The
algorithm derived assuming plate-like behavior (two-
dimensional curvature) can obviously be applied directly.
To use the algorithm formulated assuming one-dimensional
curvature the structure must be divided into slices and the
algorithm needs to be applied to each slice individually.
The normalized damage index is then determined using the
average and standard deviation of all the damage indices
from all the slices. The advantage of this approach is that it
is computational more efficient than the 2-D algorithm.
Regardless of the method chosen several additional
parameters must be chosen including the number of modes
and the number of subdivisions to be used.

Several sets of simulated data were used to investigate the
effectiveness of both approaches in locating damage in
plate-like structures as well as to study the effect of
changing the number of modes and subdivisions. The data
was generated using a finite element model of a pinned-
pinned plate with several elements reduced in stiffness to
model damage. The finite element mesh is shown in Fig. 3.
The plate was given pinned boundary conditions at y=-300
and y=300. The elements in the location of reduced stiffness
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are indicated in Fig. 3. The reduced stiffness was in the
region 48<x<94, and 84<y<132 with the center of the
damage being located at x=72, y=108. All the analysis was
done using MATLAB.

The first case studied had the stiffness of four elements
reduced by 25%. The results from this case are shown in
Figs. 4-7. In all of these figures the normalized damage
index is shown as a 3-D bar graph with values greater than 2
drawn in a darker color and are the likely locations of
damage.

In Fig. 4 the damage index is shown by dividing the
structure into slices in the longitudinal direction of the plate,
that is, slices with constant x values, with 20 divisions per
slice and using just one mode. It is clear from Fig, 4 that
the algorithm does a fairly good job of locating the damage.
The largest peak in Fig. 4 has its center at a location of
(72,105). Increasing the number of modes to five did not
noticeably change the results. In Fig. 5 the number of
divisions per slice was increased to 40 and four modes are
used. The results did not improve by increasing the
divisions and the location of the damage was found to be
roughly the same. When the structure was divided into
slices in the transverse direction (i.e. constant y), 20
divisions/slice and using four modes, the damage was once
again located as shown in Figure 6.

In Figure 7 the damage indices calculated using the
algorithm derived for plate-like structures, one mode, and
20 divisions in each directions, are shown. Once again the
damage is located fairly accurately. The two peaks in Fig. 7
are located at (64.8,105) and (79.2,105). Clearly the choice
of the number of divisions will affect the location of the
peak. Once again, increasing the number of divisions and
modes does not significantly improve the results.

An example in which the method of dividing the structure
into slices has several problems is examined in the second
set of simulated data. In this case the stiffness was reduced
by only 10%. The results of dividing the structure into
longitudinal slices with 20 divisions/slice and using one and
four modes are shown in Fig. 8 and 9 respectively. In this
case the region of reduced stiffness was not located when
using just one mode and when additional modes were
included the damage indices were found to be large along
the node line of the second natural mode. In Fig. 10-11 the
results using the algorithm for plate-like structures is shown.
In Fig. 10 only one mode was used and 20 divisions were
used in both the x and y directions. From Fig. 10 it is clear
that the area of reduced stiffness was not located. In Fig. 11
four modes and 20 divisions in each direction were used in
the 2-D algorithm and clearly the general location of the
damage has been identified.

In all of the examples used thus far it was assumed that the
mode shapes were known exactly on a very fine grid of
sensors. In actual practice this will obviously not be the
case. A reduced set of data was used to determine how the
results change using a coarser grid of sensors. In this case
the stiffness was reduced 25% and the number of sensor
locations was reduced from 338 to 56. The results from
dividing the structure into longitudinal slices with 20
divisions/slice and using four modes is shown in Figure 12.
Once again, when more than one mode is used, the
algorithm incorrectly identified damage as being along a
node line. Also, the resolution of this method is clearly
limited by the number of slices that are available. Results
from using the algorithm for 2-D curvature with four modes
and 20 divisions in each direction are shown in Fig. 13 and
the general arca of the damage can be clearly seen.

One of the major difficulties associated with implementing
the algorithms discussed in this paper was the calculation of
the derivatives and integrals when the mode shape is known
at a relatively small number of discrete locations. In both
algorithms additional intermediate points were calculated by
curve-fitting the data. The derivatives and integrals
required by the algorithms were then calculated
numerically.

CONCLUSIONS

A damage detection algorithm derived for structures whose
modes are characterized by one-dimensional curvature has
been generalized for plate-like structures that are
characterized by two-dimensional curvature. The method
only requires the mode shapes of the structure before and
after damage and the modes do not need to be mass
normalized making it very advantageous when using
ambient excitation. The algorithm was found to be effective
in locating areas with stiffness reductions as low as 10%
using relatively few modes.
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Figure 1 - A schematic illustrating a beam’s Ny sub-
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Figure 2 - A schematic illustrating a plate’s N, x N, sub-
regions.
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Figure 3 - Finite element mesh of a pinned-pinned plate
with an area of reduced stiffness.

Damage Index

Figure 4 - Damage index for a plate with a region of 25%
reduced stiffness. The plate was divided into
longitudinal slices, 20 divisions per slice, and
one mode was used in the algorithm.
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Figure 5 - Damage index for a plate with a region of 25%
reduced stiffness. The plate was divided into
longitudinal slices, 40 divisions per slice, and
four modes were used in the algorithm.
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Figure 6 - Damage index for a plate with a region of 25%
reduced stiffness. The plate was divided into
transverse slices, 20 divisions per slice, and four
modes were used in the algorithm.
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Figure 7 - Damage index for a plate with a region of 25%
reduced stiffness. The plate was divided into 20
divisions in each direction and the 2-D algorithm
was used with one mode.
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Figure 8 - Damage index for a plate with a region of 10%
reduced stiffness. The plate was divided into
longitudinal slices, 20 divisions per slice, and
one mode was used in the algorithm.
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re 9 - Damage index for a plate with a region of 10%
reduced stiffness. The plate was divided into
longitudinal slices, 20 divisions per slice, and
four modes were used in the algorithm.



Damage index

Figure 10 - Damage index for a plate with a region of 10%
reduced stiffness. The plate was divided into
20 divisions in each direction and the 2-D
algorithm was used with one mode.
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Figure 11 - Damage index for a plate with a region of 10%
reduced stiffness. The plate was divided into
20 divisions in each direction and the 2-D
algorithm was used with four modes.
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Figure 12 - Damage index for a plate with a region of 25%
reduced stiffness using a reduced number of
sensors. The plate was divided into
longitudinal slices, 20 divisions per slice, and
four modes were used in the algorithm.
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Figure 13 - Damage index for a plate with a region of 10%
reduced stiffness. The plate was divided into
20 divisions in each direction and the 2-D
algorithm was used with four modes.
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